RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FIFTH SEMESTER EXAMINATION, DECEMBER 2016

THIRD YEAR [BATCH 2014-17]

CHEMISTRY [Honours]

Date : 22/12/2016 Time : 11 am –1 pm

Paper : VI

Full Marks : 50

[Attempt <u>one question</u> from <u>each Unit</u>]

<u>Unit – I</u>

[13 marks]

[2]

- a) Complexes of monovalent silver (C.N = 2) are diamagnetic, of bivalent silver (C.N = 4 and C.N = 6) are paramagnetic (~1·7B) and of trivalent silver again diamagnetic. Explain the fact in the light of valence bond theory. [4]
 b) Which complexes of the following pairs has the larger value of Δ₀ and why? [3]
 - i) $[Co(CN)_6]^{3-}$ and $[Co(NH_3)_6]^{3+}$ ii) $[Co(NH_3)_6]^{3+}$ and $[Rh(NH_3)_6]^{3+}$
 - iii) $[Co(H_2O)_6]^{2+}$ and $[Co(H_2O)_6]^{3+}$
 - c) $V(H_2O)_6^{3+}$ has absorption bands at 17800 and 25700 cm⁻¹. Assign the bands using Orgel diagram. Calculate the value of Dq. [3+1]
 - d) Using CFSE, indicate spinels to be normal or inverse : $MnCr_2O_4$, $NiFe_2O_4$.
- 2. a) Chromium (II) fluoride and manganese (II) fluoride both have a central metal ion are surrounded by six fluoride ligands. The Mn F bond lengths are equidistant, but four of Cr F distances are long and two are short. —Explain. [2]
 - b) The reduction of violet $[Cr(H_2O)_6]^{3+}$ gives bright blue $[Cr(H_2O)_6]^{2+}$. Provide an explanation. How many d-d transitions do you expect for both? [3]
 - c) The spectrum of $[Ti(H_2O)_6]^{3+}$ shows an absorption max at 20,000 cm⁻¹. Calculate Δ_0 in KJ/mol. [2]
 - d) Predict the spin only magnetic moment of $[Mn(NCS)]^{4-}$. Comment on the following moments: $K_3[CoF_6]$ has $\mu = 4.2$ B.M. but $K_3[CuF_6]$ has $\mu = 2.8$ B.M and $K_2[NiF_6]$ is diamagnetic. [1+3]
 - e) The heat of hydration of Cr^{2+} ion is 460 Kcal/mole. For $[Cr(H_2O)_6]^{2+}$, $\Delta_0 = 13,900 \text{ cm}^{-1}$. Calculate what heat of hydration would be, if there was no CFSE.
 - Unit II [12 marks]
- 3. a) How would prepare *cis* and *trans* $[PtCl_2(NO_2)(NH_3)]^-$ starting from $[PtCl_4]^{2-}$? [3]
 - b) CrO_4^{2-} is yellow while WO_4^{2-} is colourless —why?
 - c) For the reaction trans $PtL_2Cl_2 + Y \rightarrow trans PtL_2ClY + Cl^-$ the rate constant 'K' varies as follows :

 $\begin{array}{ccccc} Y & L & K(10^{-3}M^{-}S^{-1}) \\ i) & PPh_3 & Py & 249000 \\ ii) & SCN^{-} & Py & 180 \\ iii) & I^{-} & Py & 107 \end{array}$

What is the mechanism of the reaction and why?

- d) What will you observe when TiOSO₄ in dilute H₂SO₄ solution is treated with H₂O₂ and then NaF solution? (Give the reaction) [2]
- e) $[\text{NiXL}_5]^+ + \text{H}_2\text{O} \rightarrow [\text{NiL}_5(\text{H}_2\text{O})]^{2+} + \text{X}^-\text{is much faster if L is NH}_3 \text{ instead of H}_2\text{O} \text{Explain}$ [2]

[3]

[2]

[2]

[0]

4.	a) b)	How the stabilization of abnormally low and high oxidation states of 3d-block metal ions can be done through the suitable choice of ligands? Explain the following (i) Elements in the middle of transition series have higher melting points (ii) The decrease in atomic size of transition elements in a series is very small.	[2]
		(iii) Most of transition metal ions exhibit characteristic colors in aqueous solutions.	[3]
	c)	The inert complexes are not necessarily thermodynamically stable and that labile complexes are not necessarily thermodynamically unstable. Explain with suitable examples.	[3]
	d)	What is Bjerrum method (Potentiometric method)? How do you determine the formation constant of a complex using this method?	[4]
		$\underline{\mathbf{Unit}} - \mathbf{III} $ [13]	marks]
5.	a) b) c)	Define active transport and passive transport write down the mechanism through which the nerve cells maintain the concentrations of Na^+ and K^+ inside and outside of the cells. What is cis-platin? State its medicinal use. Explain the slow rate of electron transport in cytochrome-C, and draw its active site structure.	[2+4] [1+2] [2+2]
6.	 a) b) c) d) e) 	Discuss the role of photosystem I and photosystem II in photosynthesis. Briefly describe the biological function of haemoglobin, indicating the role of metal ions present in the active site of the protein. Would chelation therapy be useful in case of lead poisoning? Explain your answer. Provide an explanation for why the toxicity of mercury is greatly increased by the action of enzymes containing cobalamin. Blood is red in colour —Why?	[4] [3] [2] [2] [2]
		$\underline{\mathbf{Unit}} - \mathbf{IV} $ [12]	marks]
7.	a)		marks] [4]
7.	a) b)	Consider the 18 electron rule as a guide, for the following molecule $\{(\mu - CO)_2[\eta^5CpRh]_3(CO)\}$, give the formal oxidation state of the metal, d electron count, total valence electrons (TVE), the number of M-M bonds and draw the most probable structure. The V – C bond distance in $[V(CO)_6]^-$ and $V(CO)_6$ are 1.93 and 2.00Å respectively. Justify the	[4]
7.	b)	Consider the 18 electron rule as a guide, for the following molecule $\{(\mu - CO)_2[\eta^5CpRh]_3(CO)\}$, give the formal oxidation state of the metal, d electron count, total valence electrons (TVE), the number of M-M bonds and draw the most probable structure. The V – C bond distance in $[V(CO)_6]^-$ and $V(CO)_6$ are 1.93 and 2.00Å respectively. Justify the difference in bond distances in these compounds.	-
7.	,	Consider the 18 electron rule as a guide, for the following molecule $\{(\mu - CO)_2[\eta^5CpRh]_3(CO)\}$, give the formal oxidation state of the metal, d electron count, total valence electrons (TVE), the number of M-M bonds and draw the most probable structure. The V – C bond distance in $[V(CO)_6]^-$ and $V(CO)_6$ are 1.93 and 2.00Å respectively. Justify the	[4]
7.	b)	Consider the 18 electron rule as a guide, for the following molecule $\{(\mu - CO)_2[\eta^5CpRh]_3(CO)\}$, give the formal oxidation state of the metal, d electron count, total valence electrons (TVE), the number of M-M bonds and draw the most probable structure. The V – C bond distance in $[V(CO)_6]^-$ and $V(CO)_6$ are 1.93 and 2.00Å respectively. Justify the difference in bond distances in these compounds. Both N ₂ and CO are isoelectronic but CO is a good π -acid ligand while N ₂ is very weak.	[4] [2]
7.	b) c)	Consider the 18 electron rule as a guide, for the following molecule $\{(\mu - CO)_2[\eta^5CpRh]_3(CO)\}$, give the formal oxidation state of the metal, d electron count, total valence electrons (TVE), the number of M-M bonds and draw the most probable structure. The V – C bond distance in $[V(CO)_6]^-$ and $V(CO)_6$ are 1.93 and 2.00Å respectively. Justify the difference in bond distances in these compounds. Both N ₂ and CO are isoelectronic but CO is a good π -acid ligand while N ₂ is very weak. Explain. Discuss the bonding pattern in 'Zeises Salt'. Explain its stability if the alkene moiety is allowed to rotate along metal-alkene bond. Account for the following trend in IR-frequencies :	[4] [2] [2]
	b) c) d)	Consider the 18 electron rule as a guide, for the following molecule $\{(\mu - CO)_2[\eta^5CpRh]_3(CO)\}$, give the formal oxidation state of the metal, d electron count, total valence electrons (TVE), the number of M-M bonds and draw the most probable structure. The V – C bond distance in $[V(CO)_6]^-$ and $V(CO)_6$ are 1.93 and 2.00Å respectively. Justify the difference in bond distances in these compounds. Both N ₂ and CO are isoelectronic but CO is a good π -acid ligand while N ₂ is very weak. Explain. Discuss the bonding pattern in 'Zeises Salt'. Explain its stability if the alkene moiety is allowed to rotate along metal-alkene bond.	[4] [2] [3+1]
	b) c) d)	Consider the 18 electron rule as a guide, for the following molecule $\{(\mu - CO)_2[\eta^5CpRh]_3(CO)\}$, give the formal oxidation state of the metal, d electron count, total valence electrons (TVE), the number of M-M bonds and draw the most probable structure. The V – C bond distance in $[V(CO)_6]^-$ and $V(CO)_6$ are 1.93 and 2.00Å respectively. Justify the difference in bond distances in these compounds. Both N ₂ and CO are isoelectronic but CO is a good π -acid ligand while N ₂ is very weak. Explain. Discuss the bonding pattern in 'Zeises Salt'. Explain its stability if the alkene moiety is allowed to rotate along metal-alkene bond. Account for the following trend in IR-frequencies :	[4] [2] [3+1]
	b) c) d)	Consider the 18 electron rule as a guide, for the following molecule $\{(\mu - CO)_2[\eta^5CpRh]_3(CO)\}$, give the formal oxidation state of the metal, d electron count, total valence electrons (TVE), the number of M-M bonds and draw the most probable structure. The V – C bond distance in $[V(CO)_6]^-$ and $V(CO)_6$ are 1.93 and 2.00Å respectively. Justify the difference in bond distances in these compounds. Both N ₂ and CO are isoelectronic but CO is a good π -acid ligand while N ₂ is very weak. Explain. Discuss the bonding pattern in 'Zeises Salt'. Explain its stability if the alkene moiety is allowed to rotate along metal-alkene bond. Account for the following trend in IR-frequencies : $[Cr(CN)_5(NO)]^{4-} \gamma(NO) = 1515 \text{ cm}^{-1}; [Mn(CN)_5(NO)]^{3-} \gamma(NO) = 1725 \text{ cm}^{-1};$ $[Fe(CN)_5(NO)]^{2-} \gamma(NO) = 1939 \text{ cm}^{-1}$ Dimeric form of V(CO) ₆ exists at 10K —why?	[4] [2] [3+1] [3]
	 b) c) d) a) b) c) 	Consider the 18 electron rule as a guide, for the following molecule $\{(\mu - CO)_2[\eta^5CpRh]_3(CO)\}$, give the formal oxidation state of the metal, d electron count, total valence electrons (TVE), the number of M-M bonds and draw the most probable structure. The V – C bond distance in $[V(CO)_6]^-$ and $V(CO)_6$ are 1.93 and 2.00Å respectively. Justify the difference in bond distances in these compounds. Both N ₂ and CO are isoelectronic but CO is a good π -acid ligand while N ₂ is very weak. Explain. Discuss the bonding pattern in 'Zeises Salt'. Explain its stability if the alkene moiety is allowed to rotate along metal-alkene bond. Account for the following trend in IR-frequencies : $[Cr(CN)_5(NO)]^{4-} \gamma(NO) = 1515 \text{ cm}^{-1}$; $[Mn(CN)_5(NO)]^{3-} \gamma(NO) = 1725 \text{ cm}^{-1}$; $[Fe(CN)_5(NO)]^{2-} \gamma(NO) = 1939 \text{ cm}^{-1}$ Dimeric form of V(CO) ₆ exists at 10K —why? What is Ziegler-Natta catalyst? Where it is used?	[4] [2] [3+1] [3]
	 b) c) d) a) b) c) d) 	Consider the 18 electron rule as a guide, for the following molecule $\{(\mu - CO)_2[\eta^5CpRh]_3(CO)\}$, give the formal oxidation state of the metal, d electron count, total valence electrons (TVE), the number of M-M bonds and draw the most probable structure. The V – C bond distance in $[V(CO)_6]^-$ and $V(CO)_6$ are 1.93 and 2.00Å respectively. Justify the difference in bond distances in these compounds. Both N ₂ and CO are isoelectronic but CO is a good π -acid ligand while N ₂ is very weak. Explain. Discuss the bonding pattern in 'Zeises Salt'. Explain its stability if the alkene moiety is allowed to rotate along metal-alkene bond. Account for the following trend in IR-frequencies : $[Cr(CN)_5(NO)]^{4-} \gamma(NO) = 1515 \text{ cm}^{-1}; [Mn(CN)_5(NO)]^{3-} \gamma(NO) = 1725 \text{ cm}^{-1};$ $[Fe(CN)_5(NO)]^{2-} \gamma(NO) = 1939 \text{ cm}^{-1}$ Dimeric form of V(CO) ₆ exists at 10K —why? What is Ziegler-Natta catalyst? Where it is used? How will you identify experimentally the presence of terminal and bridging CO group in a metal carbonyl?	[4] [2] [3+1] [3]
	 b) c) d) a) b) c) 	Consider the 18 electron rule as a guide, for the following molecule $\{(\mu - CO)_2[\eta^5CpRh]_3(CO)\}$, give the formal oxidation state of the metal, d electron count, total valence electrons (TVE), the number of M-M bonds and draw the most probable structure. The V – C bond distance in $[V(CO)_6]^-$ and $V(CO)_6$ are 1.93 and 2.00Å respectively. Justify the difference in bond distances in these compounds. Both N ₂ and CO are isoelectronic but CO is a good π -acid ligand while N ₂ is very weak. Explain. Discuss the bonding pattern in 'Zeises Salt'. Explain its stability if the alkene moiety is allowed to rotate along metal-alkene bond. Account for the following trend in IR-frequencies : $[Cr(CN)_5(NO)]^{4} \gamma(NO) = 1515 \text{ cm}^{-1}; [Mn(CN)_5(NO)]^{3} \gamma(NO) = 1725 \text{ cm}^{-1};$ $[Fe(CN)_5(NO)]^{2} \gamma(NO) = 1939 \text{ cm}^{-1}$ Dimeric form of V(CO) ₆ exists at 10K — why? What is Ziegler-Natta catalyst? Where it is used? How will you identify experimentally the presence of terminal and bridging CO group in a	[4] [2] [3+1] [3] [2] [2+1]

— × ——

(2)